
Neurobiology of Addiction and Recovery

R. Dewayne Book, M.D.

Medical Director

Fellowship Hall

Greensboro, North Carolina

Addiction

☐ Drug Addiction results from adaptations in specific brain neurons caused by repeated exposure to a drug of abuse.

Addiction

- ☐ These adaptations produce the behaviors that define an addicted state:
 - **▶**Dependence
 - **▶**Tolerance
 - **▶** Sensitization
 - **≻**Craving

How Common is Substance Use?

- ☐ As many as 85-90% of adults in U.S. use alcohol or other mood altering chemicals.
- ☐ What Percentage Are Addicted?
 - **≻**10-12%
- ☐ What makes these people different?

Different Populations

PopulationRateExposure TimeAsian1-3%4-6K YearsU. S.10-12%

Native 50-80% 400 Years

American

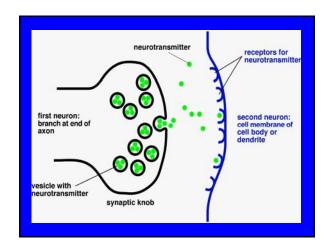
Why such large differences in nationality?

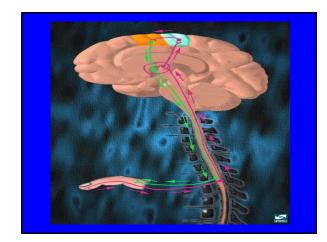
What Accounts for this Difference?

- □50% of Asians lack one form of aldehyde dehydrogenase
 - Accumulation of acetaldehyde
 - ► Facial flushing
 - ▶Tachycardia
 - ▶Burning sensation in stomach
 - >Severe headache

Electrophysiological Markers

□EEG in alcohol-naive sons of alcoholics shows:

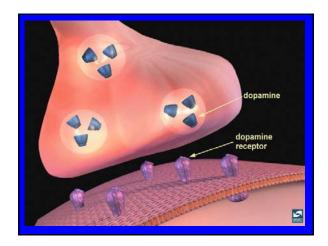

- ▶Decreased p300
- ► Decreased theta waves

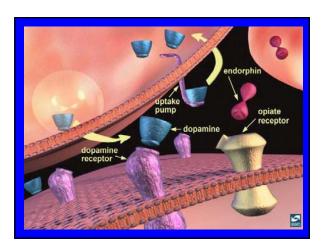

Pre-Morbid Differences

- ☐ First time drinkers' report of the intensity of euphoria
- ☐ Family History Positive (FHP) report greater euphoria with alcohol exposure than Family History Negative (FHN)

Pre-Morbid Differences ☐ First time drinkers' report of negative effects of acute alcohol exposure ☐ FHP report less negative effects than FHN Less body sway, less nausea, less disorientation Weaker warning system What Are Genes? ☐ Genes are inherited chemical recipes for proteins. ☐ Genes tell cells how much of each protein is needed when and where and under what circumstances. **Genetic Influences in Addiction** □ Family Studies show: Children of alcoholics show 3-4 times increased risk of addiction

Genetic Influences in Addiction ☐ Twin Studies: Male monozygotic: 60% concordance ► Male dizygotic: 39% concordance **Genetic Influences in Addiction** ☐ Adoptions Studies: Adoption Studies show that non-alcoholic adoptive parenting did not change risk of developing alcoholism Sons of alcoholics are **FOUR** times more likely to be alcoholic than sons of non-alcoholics **How Organisms Work** □ Neurons are pathways not physically connected. ☐ They communicate with chemical messengers. □ Neurons control: thoughts, moods, behavior, memory, emotion, sleep, aggression, desire, movement, etc.

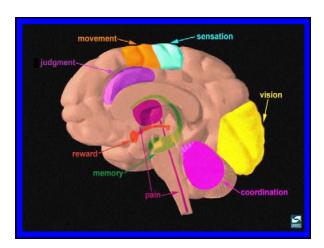




Neurotransmitters are Proteins

☐Neurotransmitters allow neurons to communicate with each other:

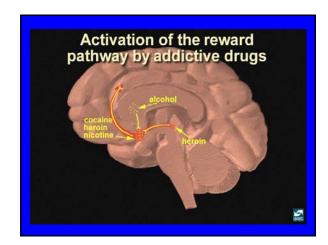
- ➤ Dopamine reward/stimulation
- ➤ Serotonin mood, sleep, appetite
- GABA sedative, anti-anxiety
- Endorphins natural pain killers



Sense of Well-Being

- ☐ The "right" combination of neurotransmitters will lead to a sense of well being.
- ☐ A sense of unease might result from a lack of the "right" combination of neurotransmitters.

Sense of Well-Being


☐ If the genetic recipe is deficient in one or more of the neurotransmitters, then a neurotransmitter or "reward deficiency" syndrome may result.

Addiction = Reward Deficiency Syndrome

- □ A decrease of endogenous neurotransmitters leads to a sense of incompleteness, decreased pain tolerance, uneasiness, anxiety.
- □ A person genetically or environmentally programmed to have a neurotransmitter deficiency is at increased risk of finding "the answer" in a chemical of abuse.

Neurobiology of Addiction ☐ Chemicals are chosen to be abused based on their action on the brain: Dopamine - reward/stimulation Serotonin - natural antidepressant ►GABA - sedative anti-anxiety Endorphins - pain killers **Neurobiology of Addiction** □Substances of Abuse mimic the effects of natural neurotransmitters: ► Cocaine/Amphetamine - dopamine >THC - serotonin ►Benzodiazepine - GABA ► Heroin/Opiates - endorphins, enenkephalins > Alcohol - ALL **Neurobiology of Addiction** ☐ The artificial release of dopamine occurs in levels never seen in nature. ☐ The brain tries to adapt by making the dopamine less effective (tolerance).

Neurobiology of Addiction

- ☐Once the cell has adapted, it becomes less responsive.
- ☐The cells are now left with insufficient neurotransmitters to function.
- ☐ These changes drive the craving for more drug.

Neurobiology of Addiction

□Dopamine deprivation produces:

- Chronic unpleasant feelings
- **▶**Depression
- Loss of motivation
- The need to take the drug to feel better
- Addicts now use just to feel "normal", not to feel high

Neurobiology of Addiction	
□In humans, the amygdala is more important in craving. If people have	
a lesion in a section of the amygdala, they no longer link pleasure to its	-
causes.	
Neurobiology of Addiction	
☐Over-stimulation leads to down-regulation of D2	
dopamine receptor.	
☐ The degree of this reduction lessens over time but is still	
present a year and a half after withdrawal.	
Neurobiology of Addiction	
□Over-stimulation of a system leads to	-
depletion. □Addiction leads to decreased dopamine,	
which leads to more dysphoria, resulting in craving.	
□NOW the Solution is the Problem!	

Neurobiology of Addiction	
□PET scans show that when addicts	-
feel a craving, there is a high level of	
activation in a strip of areas ranging from the amygdala and the anterior	
cingulate to the tip of both temporal	-
lobes (mesolimbic system).	
Neurobiology of Addiction	-
☐The highest risk of relapse for cocaine addicts is during the third and fourth	
week of abstinence.	
☐PET images show even lower levels of activity in the mesolimbic dopamine	
system during this time.	
☐The addict is almost back to normal after a year or so, but not completely.	
	1
Normal Late and CA 4 Made a	
Neurobiology of Addiction	
☐ If addiction means the brain has	-
changed, then the task is to change the brain back to normal.	
☐ This doesn't mean treatment has to	
be biological.	
☐Behavioral treatments can change the brain as well.	
the brain as well.	

Neurobiology of Addiction One day there might be a drug specific neurochemical cocktail for each addictive drug that would break the cycle of craving.